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ABSTRACT

The results of a model study of the forces caused by oscillatory
waves on large rectangular tank-1ike submerged objects are presented.
Three phases of the problem were examined: 1) description of the forces
in terms of dimensioniess parameters, 2} description of the effect of
large wave heights which are of importance to the designer, and 3) the
presentation of a format to be used in model studies on submerged struc-
tures.

Theoretical studies of the problem have assumed wave heights to be
small and the forces to be entirely inertial. However, of interest to
the engineer are the forces caused by the larger waves generated by
severe storms. In the model study the forces caused by the Targer waves
were determined and the effect of the water particle velocity in produc-
ing a drag force was examined.

The relationships between the fluid particle displacement and the
coefficients of mass and drag were evaluated. Previous studies indicate
that particle displacement is related to the values of empirical coeffi-
cients assumed by previous investigation.

The experimental results are given in a dimensionless form. Pro-
vided the Taws of modeling are followed, and there are no scale effects,
these results may be used to determine the forces on prototype structures

in the ocean.
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PREFACE

-Research described in this report was conducted as part of the re-
search program in coastal and ocean engineering at Texas AM University.
Experimental work was conducted in the Hydromechanics Laboratories and
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CHAPTER 1
INTRODUCTION

The huge amount of energy required by modern man to supply
electricity to his home, run his car, and operate his industry has
prompted the petroleum industry to explore remote offshore areas and
deep water regions in search of oil and natural gas. The problems
encountered in extracting the oil and gas found in these areas have
produced new innovations in the petroleum recovery industry.

The problem of crude oil storage at offshore fields distant from
adequate shore and port facilities was solved by the Dubai Petroleum
Company and Chicago Bridge and Iron Company with the construction
and placement of three large submerged tanks at their field in the
Arabian Gulf. With processing equipment located on platforms atop
two of the tanks, the facility represents the world's largest self-
contained offshore production complex with capabilities for storage
and tanker loading (16). |

The need to extend the oil recovery capabilities of the petro-
Teum industry to deeper water has led to the development of plans for
an entire oil field underwater. Phase One of such a project was com-
pleted in August of 1972 when Lockheed Petroleum Services Ltd. and

Shell 0il1 Company completed the installation of the world's first dry

The citations on the following pages follow the style of the
Journal of the Waterways, Harbors, and Coastal Engineering Division,
Proceedings of the American Society of Civi] Engineers’,




underwater 0il well in 375 ft. of water in the Gulf of Mexico (1).
The actual well-head structure is thirty ft. high and ten ft. in
diameter. Future plans call for additional underwater well-heads
with a submerged manifold center to commingle production, and a sub-
merged production station where 0il and gas are separated and then
pumped to the appropriate holding facilities.

The submerged structures described above represeﬁt a consider-
able outlay of time and money. These and other future concepts of
underwater structures require sound design criteria to assure a
balance between economy and maximum structural integrity. Of pri-
mary concern to the designer working in an ocean environment where
water depths range from intermediate to shallow are the forces due
to gravity waves. Analytical theories presently put forth for deter-
mining wave forces on large submerged objects are adequate only for
waves of small amplitude and for objects of idealized shape.

Until such time as theoretical force predictions are available,
the designer must rely on either past experience or the results of
model experiments. Also, the peculiarities of each design situation
may require model testing to complement any theoretical results
obtained. The importance of such model tests can only be emphasized
by the investment made by Chicago Bridge and Iron Company in building
and instrumenting its wave-test facility. Present research by Chi-
cago Bridge and Iron involves a submerged 1-million bbl. storage

facility and some multipurpose structures (17).



It is with these thoughts in mind that the objectives of this
thesis are stated.

Thesis Objectives. - The primary objective of this thesis was

to study the forces caused by oscillatory waves on large submerged
objects and to present the information regarding such forces in a
suitable dimensionless form. An investigation was made of several
dimensionless parameters for plotting against the dimensionless force
to determine the best possible representation to be used in model
studies. Data previously obtained by Herbich and Shank (35) was

used in the investigation along with data from experiments performed

by the author on Targer models.



CHAPTER II
LITERATURE SURVEY

Studies on Wave Forces. - About 1950, Morison, et al. (23,24,26)

presented an equation for calculating the total force on an object
under the influence of gravity waves. The equation, known as the
"Morison equation”, was developed for piles and later éxtended to
submerged objects (27). The equation represents the total force as
the sum of two components, drag and inertia. The Morison equation

D p M p 3t v ' tT e '

where FT = total force on the object
CD,CM = drag and inertia coefficients, respectively
A = cross-sectional area of object {projected)
¥ = volume of object
p = density of fluid

u = velocity of water particle

= acceleration of water particle

The Morison eguation uses empirically determined coefficients
(CD,CM) and the particle velocity and acceleration equations of some
appropriate wave theory to relate total force to wave parameters.

An equation for the horizontal wave force on a large rectangular
submerged structure was given by Reid and Bretschneider (31). The

volume of the object is considered large enough that the force on



the object is entirely inertial; and the force is computed from the
horizontal pressure distribution beneath the wave. The Reid and

Bretschneider equation for horizontal force is

2nt
_ H cosh k{z+d) 1
Fp = Y0y 7 2083 opr gy - [cose1 - cos(el + ~r-0] (2.2)
where FH = horizontal force component

L]
I

M = mass coefficient to account for disturbance
of flow due to presence of object

Ly = object dimension parallel to direction of
wave travel

Ly = object dimension perpendicular to direction
of wave travel

2y = object height
y = unit weight of fluid
H = wave height
6y = phase position of leading edge of object
d = water depth
X,z = horizontal and vertical coordinates, respectively

L = wave Tength

Chakrabarti (5) showed that this equation reduces to the inertial
term of the Morison equation for small objects (i.e., £3<<L).

In 1958, Brater, McNown, and Stair (2) studied the magnitude
and characteristics of wave forces on submerged structures. Several
models which included rectangular barge-like objects were supported
from rods instrumented to detect horizontal and vertical loadings.

The wave profile and the time history of the resulting horizontal



and vertical forces were obtained for various wave heights, wave
periods, and barge Tocations with respect to the water surface.

For the barge-like structure, the force was determined to be almost
entirely inertial, with the maximum force usually occurring under
the nodes of the wave.

Using the pressure variation beneath a wave (whichmconsidered
the change in water surface elevation), Brater, McNown, and Stair
computed values for the horizontal inertia coefficient. The inertia
coefficient was shown to decrease with increasing wave height. For
low wave heights, the theoretical force and measured force agreed
well for constant values of the inertia coefficient. Fair agree-
ment existed for larger waves except for the region near the bottom
where the measured and theoretical values diverged (measured being
greater). Maximum wave heights were usually less than .29 feet.

In the previously cited articles, it was assumed that the
Morison type equation was valid and results indicate that for objects
small relative to the wave length this is true. Garrison and Rao
(29) noted, however, that the Morison equation is used under the
following assumptions:

a) The object does not appreciably disturb the incident wave.

b) The fluid flow field existing at the center of the object
extends to infinity.

c) The total force is the sum of the inertial and drag com-
ponents of force.

As the size of the object increases relative tc the wave length and

water depth, three effects cccur:



a) The incident wave can be scattered due to the presence
of the object.

b) If the object is not deeply submerged, there is an
effect due to the proximity of the free surface.

c) If the object is large, the inertial forces predominate.

The first two effects are called "diffraction effects". The
simplifying assumptions of the Morison equation are no Tonger valid,
and another approach should be used.

A theory which accounts for the relative size of the object
and the free surface effect is commonly called "diffraction theory®.
In this approach, separation and viscous effects are neglected and
the problem is set up in terms of a velocity potential. The velocity
potential which satisfies the necessary boundary conditions is
sought. Once it is found, the dynamic pressure distribution is
determined from the 1inearized Bernoulli equation. The forces are
obtained by integrating the pressure distribution over the surface
of the object.

In 1954, MacCamy and Fuchs {22) used diffraction theory to
determine the wave force on large circular cylinders extending ver-
tically from the bottom through the free surface. For small cylin-
ders, the equations reduced to the inertial force term of the Morison
equation, provided one considers the inertia coefficient in the
Morison equation to equal its potential flow value of 2.0.

In recent studies at Texas A&M University, Garrison, et al.
(11,12,29) investigated the forces due to waves on large submerged

objects using both theory and experiment.



Garrison and Snider (11) determined the horizontal and vertical
wave forces on a submerged hemisphere. The theoretical approach was

compared with experimental results using the equations,

Fx
. _max _ il 27a
fx = az H COSh .}l 2'}1‘3. L *« 8 ¢ a2 4 ¥ & a4 e = (213)
a7 a L
and F 2va 2na 2na
Ymax L CSth e -cosh AR 4
Ya 7 T a L
where fx,f = horizontal and vertical force coefficients,
Y respectively
F ,F = maximum horizontal and vertical force,

“max  Ymax respectively

v = unit weight of fluid
a = radius of hemisphere
H = wave height
h = water depth
L = wave length

The theoretical approach was based on two assumptions: 1) the
wave length is large compared to the object size, and 2) viscous
effects are negligible., Equations 2.3 and 2.4 are derived from the
pressure distribution as given by Airy wave theory. Comparison of
theory and experiment showed good agreement for conditions covered

by the assumptions.



Garrison and Rao (29) developed in detail the diffraction theory
for wave forces on a rigid semiellipsoid submerged in an inviscid,
incompressible flyid. The formulation of the problem using diffrac-
tion theory is difficult even for the simple shape involved. More
complex shapes produce formidable calculations requifing computer
numerical analysis.

Herbich and Shank (14,35) represented the results of model studies
on half-cylindrical and rectangular-shaped objects. They found that
the force on the models was almost entirely inertial, and using the
equation given by Reid and Bretschneider (Eq. 2.2) determined an
inertial coefficient for the models. The results of the model
studies were given in the form of dimensionless graphs of a dimen-
sionless force versus relative depth {L/d) for constant values of
wave steepness (H/L) for both the forizontal and vertical directions.

The dimensionless force was given by

(Fr) = Fmax .......... . . (2.5)
DIM 3
A7 H
oz
where FDIM = dimensionless force

max = maximum measured force
A = significant linear dimension equal to the height
of the model squared divided by the length of the
model in the direction of wave propagation for
all models except the flat plate
A = Hm = height of model for flat plate

d = water depth



10

H

wave height

vy = specific weight of fluid

Garrison and Chow (10) outlined a diffraction theory valid for
submerged objects of arbitrary shape. The theory was applied to a
rounded rectangular-shaped structure and compared with the results
of modeT tests. Comparison was made in terms of theoretical and
measured dimensionless force graphs and the agreement was good. The
model used was by far the largest of any tests cited, being 73" long,
13" high, and 25.5" wide.

Much of the work done in determining wave forces on submerged
structures assumed that viscous forces are negligible. Sarpkaya and
Garrison (33) determined that for small fluid particle displacement
to diameter ratios, drag forces on cylinders could be neglected.
This assumption is extended to larger objects and different shapes
by Garrison, et al, However, as the fluid particle displacement to
object size ratio increases, a point will be reached where viscous
effects become important and need to be considered.

Studies Using Dimensionless Parameters. - Keulegan and Carpenter

(19) developed a Fourier series analysis for the force on flat plates
and cylinders due to a sinusoidally varying fluid motion. By compar-
ing the Morison equation to the Fourier series, they were able to
relate the coefficient of inertia to the coefficient of the first
sine term of the Fourier expansion, and the coefficient of drag to

the modified first term of the cosine part of the expansion. A
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remainder function, AR, was used to represent the truncated part of
the Fourier series not considered in the Morison equation. The
remainder function was considered by Keulegan and Carpenter to give
a truer representation of force when considering the coefficients
CM and CD as being constant throughout a given wave‘cycie.

Keulegan and Carpenter established the significance of the
"period parameter" in this work. Using experimental studies, they
related the period parameter to both the coefficients of drag and
inertia and to the coefficients of the Fourier series. The period
parameter is given by UM?/D where UM = maximum velocity, T = period
of oscillation, and D = diameter of cylinder or width of plate. It
was noted that vortex formation and shedding could also be predicted
using the period parameter.

Paape and Breusers (28) suggest that forces for prototype struc-
tures be derived from model tests applying the ratio of particle
displacement to characteristic dimension (e.g., H/Z, 2wa/L: where
H = wave height, £ = characteristic dimension, and a = amplitude
of fluid motion) as an independent variable. They found that in wave
motion the time dependency of the flow pattern leads to an influence
of pile dimensions relative to the dimensions of orbital motion.

The Iversen modulus, described by Crooke, is another dimension-
less term used to describe fluid forces on piles. Wiegel (38),
however, showed that the Iversen modulus was related to the Keulegan-

Carpenter period parameter. The Iversen modulus is given by
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I, = {su/at) D

V—“‘-—"——?—*... ...... -....(2.6)
u
where au/st = fluid particle acceleration
u = fluid particle velocity
D = for piles, cylinder diameter

Substituting for particle acceleration and velocity as defined

by Airy wave theory, Equation 2.6 may be rewritten as

. 2nD  sin(kx-ot)
Ly = =7 cos(£x-ct) (2.7)

For maximum acceleration and velocity, Equation 2.7 becomes
_ D _ 1 (2.8)
Iy =2m gy =2n {:period parameter_l

It should also be noted that for total particle displacement

and maximum velocity, the following parameters are proportional to
each other for a given water depth, wave length, and object submer-

gence:

a) total particle displacement
characteristic length

b) period parameter

¢) wave height
characteristic Tength




CHAPTER III
THEORETICAL CONSIDERATIONS

Wave Theory. - The research presented in this paper is essen-.
tially a model study in which physical quantities were directly
measured, There are, however, certain quantities necessary to this
study which do not avail themselves to easy measurement. Fortunately,
these difficult to determine quantities have been mathematically
described in any of several wave theories.

In the laboratory, wave characteristics such as wave period,
wave height, and water depth are easily measured. These values are
then used to calculate the wave length, particle kinematics, and
pressure distribution under the wave. Fig. 1 pictorially represents
the relationship between the measured and theoretical gquantities as
used in this study. The measured and calculated wave characteristics
along with the measured force are used to determine dimensionless
force. The pressure distribution given by theory is used to deter-
mine a theoretical dimensionless force.

A wave theory which is easy to work with, accurate, and gives
an easily understood interpretation of the physical situation is
Airy wave theory. Sometimes referred to as Stokes' first order wave
theory, it is a first approximation to a mathematical description
of water wave phenomenon. The theory assumes the existence of a

velocity potential based on irrotational fluid motion. The fluid is

13
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assumed to be inviscid and incompressible, and the velocity potential
must satisfy Laplace's Equation subject to certain boundary condi-
tions.

Laplace's Equation in two dimensions is given by

2 2

g & 3 ¢
32.,92-90 ..., (31)
ax2 322

1%

where ¢ = the velocity potential

x,z = horizontal and vertical coordinates, respectively

The boundary conditions which must be satisfied by the velocity

potential are given by

3¢ = 0 (3.2)
dZ ; =-d
_le
nEgRE 0 ottt (3.3)
z =0
where d = water depth

n = free surface elevation

g = acceleration of gravity

t = time

These boundary conditions are based on the following assumptions:
1. Gravity is the only major body force present.

2. Atmospheric pressure is constant over the free surface
and is referenced to zero.

15
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3. MWater depth is constant and the bottom surface is
impermeable,

4, The wave height is small compared with the wave Tength
and water depth.

5. A1l nonlinear terms are small and can be neglected.

Solving Fquations 3.1, 3.2, and 3.3 for the velocity potential

yields
_ _ag cosh k{z+d) .
o= - s sin(kx- t) . . .. .. . (3.4)
where a = wave amplitude

g = acceleration of gravity

o = 27/T = wave angular frequency

T = wave period
k = 2n/L = wave number
L = wave length

Fig. 2 is the definition sketch for the terms used in Airy
wave theory and presented here.
Substituting for & in Equation 3.3 yields the equation for

the wave surface profile.

n=acos(ks-ot) . . .. ... c e v .. (3.5)

By definition of the velocity potential , the horizontal and

vertical components of water particle velocity are given by,
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S (P 2

and an substituting Equation 3.4 into 3.6 and 3.7, we have

- agk cosh k(z+d)

= g coslkx-ot) L. ... (3.8)

w = agk sinh k{z+d)

5 coshkd— Sinlkx-st) . .. .. (3.9)

Local water particle acceleration components are the time

derivatives of the velocity components.

%% = agk EQ%ggéiﬁggl sin(kx-ot) . . . . (3.10)
W sinh k{z+d)

5"-5 = -agk W"“ COS(kX"O’t) W e e e (3-1])

Particle displacement from its mean position can he found by
integrating the velocity components with respect to time. Letting
£ be the horizontal displacement and e be the vertical displacement,

it can be shown that

£ = - %. ¢ gme(%agl- sin(ke~ot) . . . . . (3.12)
. H sinh k(z+d)
£ ?— — S:I'-n—h"‘lza"‘_ CDS(kX"Gt) L (3-]3)

The equation for the wave Tength (L) in Airy wave theory is the
same as the equation for wave length in Stokes' second order wave
theory. Notice that the equation is transcendental, as L appears on

both sides of the equation.
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2
L = ﬂ%; tanh E%Q, ......... (3.14)

The speed of wave propagation or the wave celerity (C) is

given by

Finally, the pressure beneath a wave is found by substituting

for ¢ in the linearized integrated equation of motion:

Q2

& P
3t o

and

P=vya- coigsk(2+d scos(kx-ot) - vz . . . (3.17)

Details of the complete formulation of small amplitude (Airy)
wave theory are given by Wiegel (38), and Dean and Fagleson (18).

As mentioned previously, Airy wave theory is easy to work with.
It also has the advantage of allowing the user to visualize mathe-
matically the phenomenon associated with wave motion. However, it
is a first approximation and a word should be said about the extent
of its applicability.

In 1953, Morison and Crooke (25) performed a set of experiments
in which they measured the wave surface profile, horizontal and ver-
tical particle velocity, and the size and shape of particle orbits.
The results of the laboratory experiments were compared with Stokes'

first order (Airy) and Stokes' second order wave theories. They
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determined that good agreement between theory and experiment existed
where the relative water depth (d/L) was greater than about 0.2,
even for waves of appreciable wave steepness (H/L). Fair agreement
existed in the range of 0.2 > d/L > 0.1.

Dimensional Analysis. - In model studies, one of the most power-

ful tools the investigator has to work with is dimensional analysis.
By grouping significant variables into dimensionless parameters, it
is possible to reduce the number of variables in the problem. Di-
mensional analysis yields an equation describing the phenomenon which

can be written as

™y = f(ﬂz,ﬁB, ves s wn) e e e e . (3.18)

where the nn’s represent the resulting dimensionless parameters.
Fquation 3.18 is the most general equation describing the problem.
Careful selection of the important variables in question will result
in the most useful form of Equation 3.18. It is therefore necessary
that there be some idea as to which variables are important in the
analysis of the phenomenon.

The primary objective of this thesis is to study the forces
caused by oscillatory waves on large submerged objects and present
the information regarding such forces in a suitable dimensionless
form. Dimensional analysis yields the dimensionless parameters which
are used in the dimensionless plots presented. Dimensionless graphs,
properly done, are important for several reasons: 1) The dimen-

sionless graph provides more information than a graph in which the
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coordinates have dimensions. 2) Being dimensionless, any system
of measurement can be used (i.e., CGS system, MKS force system,
American Engineering System, etc.). 3) Prototype phenonemon can be
predicted from model studies using the dimensionless plots if the
proper model-prototype similitude is observed. |

Similitude of model and prototype requires that geometric,
kinematic, and dynamic ratios in each system be equal. The Tength
ratio for the model dimensions must be the same as the corresponding
length ratio in the prototype for geometric similarity. Kinematic
and dynamic similarity requires, for example, that the velocity
ratio and mass ratio respectively, be equal in model and prototype.
Satisfying these conditions, the dimensionless plots are valid for
both model and prototype.

The first step in the dimensional analysis is the selection of
the variables pertinent to the problem of wave forces on a submerged
structure. This requires knowledge of the process, and a study of
fluid force in oscillatory flow will aid in determining these quanti-
ties. The variables fall into three basic categories: 1) geometric
variabies, 2) kinematic and dynamic variables, and 3) fluid proper-
ties. Thus, it has been determined that the force on a body due to

oscillatory waves can be written as the functional relationship:

F = f'E(j'L, %, H, d, L: bs Uy U; T, g) ...... (3.]9)
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The first five terms on the right-hand side of the above rela-
tionship are geometric properties of the system. The volume (V) is
important because the force in accelerated flow is proportional to
the volume. The quantity 2 can be any characteristic lenath of the
system. The wave height (H), water depth (d), and wave length (L),
characterize the wave motion. The next two terms are the fluid pro-
perties, density (p), and dynamic viscosity (u). Finally, the
kinématic and dynamic terms chosen are velocity (U), wave period (T),
and gravitational acceleration (g). The force (F) is also a dynamic
variable,

Using the method described by Street (37) and choosing the
repeating variables to be density (p), gravitational acceleration (g),

and volume (¥), the following eight dimensionless terms were computed.

N T
1 09 2 D\/g—“;[ 3 ¥
3.6 3 3
T, = i 175“1?[— ’IT6=1[_;‘E~ > (3.20)
7 ¥ 8 93-'#'-

/

This forms a complete set of the variables in question. If we
choose, we may multiply or divide dimensionless terms or raise them
to any power to obtain new dimensionless terms which more appropri-
ately describe the process. For example, multiplying i by the in-
verse of e and taking the cube root of the result, we obtain the

relative depth parameter (d/L).
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Tya = = ... (3.21)
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This type of manipulation results in the following new dimensionless

quantities.
i = F T - ]J ™ = E.\
9 ¥_.H L 10 3 11 L
PEY T T pygﬂ,'
_d _ 4 _d

"2 T3 ™3 7T 4 ST P (3.22)
= VT U

15 £ 16 ngi_ )

These m-values can then be substituted into the functional

relationship having the form of Equation 3.18.

F = fz( u N %, %, %‘, -(é, %—I—, _._..1'.].._. ) L. (3'23)
PITT e g23 T

The left hand side of Equation 3.23 is the general representa-
tion for the dimensionless force. The reason for the form of this
term will become apparent in the discussion in the next section.
The first term on the right hand side of Equation 3.23 can be shown
to be the ratio of Froude number ito Reynolds number. Garrison and
Chow {10) suggest that this term may be neglected provided it is
small, which is generally the case for large objects submerged in

water.
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The next three w-parameters in Equation 3.23 (H/e, d/2, /L)
indicate the condition of flow around the object. Garrison and
Rao (29) identify these terms as: 1) the relative displacement
parameter (H/%), 2) the surface effect parameter (d/g), and 3) the
relative size parameter (2/L). Their importance to the problem of
wave forces on submerged objects can best be understood by consider-
ing their effect on the validity of the Morison equation and diffrac-
tion theory. Fig. 3 (after Garrison, Rao, and Snider (12)) gives a
graphic representation of the relationship between these parameters.

Fig. 3 is drawn for a constant value of the surface effect
parameter. The coefficient of mass in the Morison equation will
depend on this value. As the ratio of d/¢ decreases, the effect of
the object on the free surface will increase and diffraction effects
will predominate.

The relative displacement parameter (H/2) is related to viscous
effects. Sarpkaya and Garrison {33) have shown from unsteady flow
experiments on cylinders that for small values of the ratio of fluid
particle displacement to cylinder diameter (the initiation of motion)
the values of the inertial and drag coefficients are equal to their
potential flow values of 2.0 and 0.0, respectively. However, as the
ratio of fluid particle displacement to cylinder diameter increased,
separation occurred and the drag coefficient increased from zero.
Using Tinear wave theory, it can be shown that for a given wave
Tength and water depth the ratic of total fluid particle displacement

to object characteristic length is proportional to H/z. Diffraction
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theory neglects viscous effects and therefore is valid for small
values of the relative displacement parameter.

The relative size parameter is important in determining the
validity of the Morison equation. For small structures, such as
piles, the relative size parameter is small and the Morison equation
is valid. For Targe structures, the flow becomes disturbed and
diffraction effects predominate. If viscous effects are small,
diffraction theory can be used to find the forces on large objects.
The relative size parameter is also important in describing the
variation in force over the dimensions of the object.

The next dimensionless term is the relative depth (d/L). The
relative depth and wave steepness (H/L) characterize the incident
wave.

The dimensionless term UT/% is called the period parameter.
Keulegan and Carpenter (19) correlated this term with the coeffi-
cients of mass and drag for unsteady flow around a cylinder. This
parameter is similar to the relative displacement parameter in that
for linear wave theory, they are both proportional to the total
particle displacement to characteristic Tength ratio as shown in
Equations 3.24 and 3.25 below. For a given water depth and wave

length, we may write

£
total _ H _ cosh k(z+d) _ , H
3 Y sinh kd KIE" (3.24)
and
UmaxT H cosh k{z+d)

_ , _ . H
e TR Temhk - kg (3.25)



The Tast dimensionless term in Equation 3.23 is the Froude
number (U//g¥}. Although important in the problem of waves gener-
ated by moving ships, the Froude number does not appear significant
in the problem of wave forces on submerged structures.

Theoretical Wave Forces. - The pressure distribution under a

wave is given by Equation 3.17. Neglecting the hydrostatic term,
we may write the wave induced pressure as,

P(x,S,t) = Yg-%%%%-%g— cos{kx-ot) . . . . . . . (3.26)

where P(x,5,t)

wave induced pressure
y = unit weight of fluid
H = wave height
S = (z+d) = elevation above bottom
k = 27/L
L = wave length
¢ = 24/T
T = wave period
t = time.

Consider a rectangular structure submerged so that the center
of the structure is located a distance S' above the bottom as shown
in Figure 4. Let 2, be the structure dimension in the direction of
wave propagation, £, is the structure dimension perpendicular to
the direction of wave propagation, and ¢35 is the vertical dimension
of the structure. The structure is considered deeply submerged so

that surface effects are negligible. Neglecting viscous effects,

27
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we may write the force due to a wave on the structure as a result of
the wave induced pressure distribution. For the force in the hori-

zontal direction, we have

4
P{x-%, S' +5,t)ds -

|
Sl

%3
| 7
o
P(xt 7, §* + 5,t)ds

The coefficient CMH accounts for the disturbance of the flow
due to the presence of the object. It is the coefficient of mass in
the Morison equation and has a value greater than unity.

Substituting Equation 3.26 into Equation 3.27 yields

H cosh k(5'+S
2 T()Sh—(m-—)— cos k(X-.Q.«i/Z)-—ct ds -

H cosh k(S'+S
cosh Kd L cos k(x+2,/2) -0t dﬁ] ... (3.28)

29
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This equation can be rewritten as

. (3.29)

cosh k(S'+S)dS = %— [sinh k(S "+1,4/2) -sinh k(s'-gs/z)]

. . . (3.30)

Using the relation-

sinh{utv) - sinh(u-v) = 2 cosh u sinh v

Equation 3.30 reduces to the expression

%— cosh kS' sinh(keg/2) . . . ... ... (3.31)
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Using the relation
€os U - ¢0s v = -2 sin 1/2{u+v) sin 1/2{u-v),
the bracketed {} part of Equation 3.29 becomes
2 sin(kx-ot) sin(kzI/Z) ....... (3.32)

We may now substitute expressions 3.31 and 3.32 into Equation

3.29. This yields

. ke kg
Fy = Gy v g S ﬁ-g—gg:—% sinh -?3- . 2sin »-21 sin(kx-ot) (3.33)

By multiplying and dividing Equation 3.33 by Ly L35 and k, we

produce an equation of the form

H cosh kS' sinh ke4/2\ fsin ka,/2
W2 Mt K oshka T\ TR ki 72

sin(kx-ot) . . . . e e e e e e e e e e e e e .. (3.34)

It is noted here that Byt Ay 23 is the volume of the

rectangular structure and the Equation 3.10 is present in 3.34.

SU sinh k23/2 sin k£1/2
W CMHp Yot ki,/2 ke /27 ) =t (3.35)

Dean and Dalrymple (9) in a similar derivation give the equa-

F

tion for the vertical force. The derivation is identical to the one
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done here for the horizontal force and need not be repeated. The

vertical force is given as

- sinh k23/2 sin k£3/2
FV = CMVD .\,(_5_{_ * k23/2 kz]/z o h e e (336)

Equations 3.35 and 3.36 represent the theoretical wave force on

a large rectangular structure, for the horizontal and vertical direc-

tions, respectively. It should be noted that the x- and z- compo-

nents of acceleration are evaluated at the center of the structure.
The hyperbolic sine term

sinh (kg3/2)

SHL3 = k23/2 ........ (3.37)

accounts for the variation in pressure over the end vertical faces
of the structure. For values of L4 less than ten percent of the
wave length, the maximum error in neglecting this term is about one
percent.

The circular sine term

sin (k£1/2)

SLT = k£1 BT e e e e e e e e (3.38)

accounts for the variation in pressure over the length of the struc-
ture parallel to the direction of wave propagation. For values of
%7 less than nine percent of the wave Tength, the maximum error in

neglecting this term is about one percent.



33

For objects which are small (i.e., follow the above criteria),
the value of Equations 3.37 and 3,38 is approximately equal to one
and Equations 3.34 and 3.35 reduce to the inertia force term of

the Morison equation.

Fhp = cMHpv g%- e e e (3.39)
Fy = cMva g%- e e e e e e .(3.40)

The values of the coefficients CMy and Cmy are obviously dif-
ferent due to variations in flow kinematics in the x- and z- direc-
tions, and also due to possible shape variations in the X, y and
z, ¥ planes.

Dimensionless Force. - For a large object which is deeply sub-

merged, Equation 3.23 may be written in the following manner

E — =y (SUL /L) e ... .(3.41)
.;L.._._.-_.
pg dL
where F = force
o = density of fluid

g = gravitational acceleration
V = volume

H = wave height

d = water depth

L = wave length

St = characteristic length of system represented as the
distance of the center of the tank above the bottom
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% = characteristic length of system
Dean and Dalrymple (9) have suggested a dimensionless force
term for the vertical and horizontal force components on a large
rectangular structure. The dimensionless force is necessarily given
for the maximum force for the conditions stated. S1ightly modified,

the equations given by Dean and Dalrymple (9) are

(Fuay ) h
(Fapuly = —p——"————— . . . . . ... (3.42)
DIN'H ;gi- %+ SHL3 - SL1
(Finy)
(Fommdy = MRS (3.43)

Y%-- % - SHL3 - SLI

where SHL3 and SL1 are given by Equations 3.37 and 3.38, respectively.
A theoretical dimensionless force equation is determined by

solving Equations 3.35 and 3.36 for the maximum force component and

combining the results with Equations 3.42 and 3.43, respectively.

The theoretical dimensionless forces are

=0 e d cosh kS'

Fomly =Cw, """ T Coshka - - (3.44)
_ . d . sinh ks'
(Fomdy = CMH LA = = PR (3.45)

Another set of dimensionless force equations result from

dividing Equation 3.34 by the expression y%—#-- SHL3 - SL1 for the

maximum force. This gives the theoretical dimensionless force equa-

tion
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- . _ . cosh kS'
(FDIM)H = CMH i m ......... (3.46)

Similarly for the vertical component of force

(Fpmly = Cuy, * ™ Cosh kd

The use of Equations 3.46 and 3.47 requires the dimensionless

force terms for the vertical and horizontal direction to be

_ (Fyay )
Fymly = - MAX ‘Y e e e e (3.48)
METEREE
o). = (Fyay i e (3.89)
DI My s st

Equations 3.42 through 3.45 are represented by the functional
Equation 3.41. The terms SHL3 and SLT are dimensionless representa-
tions of the dimensionless parameter &/L for the height and length
of the structure as shown in Equations 3.37 and 3.38, Equations
3.46 through 3.49 are represented by the functional equation

F
. A
YO r

= f4 (d/L, S*/LY . . . . .. (3.50)

=

v
which can also be determined by dimensional analysis.

Equations 3.44 to 3.47 give theoretical values for dimension-
less force which depend on the value of the coefficient of mass used.
Figs. 5 and 6 show the theoretical dimensionless force plotted

versus L/d for the indicated values of CM and S'/d., Model studies
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using Equations 3.42 and 3.43 or 3.48 and 3.49 will require that
the ratio of S'/d be equal in model and prototype. In addition,
geometric similarity requires that the ratios a]/L, QZ/L, 23/L,

H/L and d/L be the same for model and prototype. Changes in the

width of the structure are reflected in the volume (¥}.
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CHAPTER TV

EXPERIMENTAL EQUIPMENT AND PROCEDURE

Experimental Facility, - The experimentation described in this

report was performed in the three dimensional wave facility of the
Coastal and Ocean Engineering Division of Texas ASM University (Fig.
8). The wave basin is eighty feet Tlong by thirty two feet wide, and
has a maximum water depth of two feet. The test position of the
models in the basin was such that no side wall effects could be felt
by the mcdels.

Waves were produced by the paddle-type wave generator shown in
Fig. 7. Three paddles (each thirty in. high and ten ft. long) span
the width of the basin and were adjusted to oscillate in phase. A
seven horsepower variable speed motor rotated the main crankshaft
which was connected to the paddles by three drive rods. The stroke
of the paddies (and thus the wave height) was varied by changing the
position of attachment of the drive rods to the crankshaft arms with
respect to the center line of the shaft.

Peculiar to this wave generator is the fact that the smallest
eccentricity of the drive rod arms from the center of the crankshaft
is three inches. This made it impossible to get small wave heights
when the wave period was small, as the faster the paddle oscillates
the more water it moves (thus higher wave height). Translated into
numbers, this means that for the smallest stroke a rotation period

of 2.5 sec. produced a 0.1 ft. wave, whereas, a rotation period of
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FIG. 8 - WAVE

BASIN.




1.3 sec. produced a 0.3 ft. wave. The wave period was changed by
varying the speed of the drive motor.

Located opposite the wave generator at the other end of the
basin was a wave absorber (Fig. 8a). The wave absorber was an arti-
ficial beach consisting of a 30° impermeable slope covered with
approximately four inches of a permeable fibrous material. Waves
incident on the beach.were dissipated by breaking and/or by absorp-
tion of runup by the permeable layers. RefTecﬁion tests indicated
that more than 80% of the incident wave was dissipated by the wave
absorber depending on the wave steepness.

Models. - The data used in this study have resulted from tests on
four models. FEach model was constructed of 3/8" plexiglass and was
rectangular in shape with open bottom. The model designation and

dimensions are given below.

Model 1 - 2 .33 ft.; Lo = .66 ft.; g = .37 ft.
Model 2 by = .66 ft.; Ly = .66 ft.; fq = .37 ft.
Model 3 Ly = 96 ft.; Ly = .66 ft.; Ly = 37 ft,
Model 4 2 =1.29 ft.; 2y = .66 ft.; Ry = .37 ft.

The quantities 21 and Lo refer to the dimension of the model with
respect to the direction of wave travel. The term 2 is the model
dimension parallel to the direction of wave advances; Lo is the model
dimension perpendicuiar te the direction of wave advance; and, i3 is
always the model height. [t can be noted that models 1, 2, 3 and 4,

have the same height (24) and width (2,), but the dimension of the
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model in the direction of wave travel (z}) varies.
By rotating models 3 and 4 ninety degrees and using model 2

we can form another model set.

Model 2 - &y 7 .66 ft.; Ly = .66 ft.; fq = .37 ft.
Model 5 - by = .66 ft.; Ly = 96 ft.; fq = .37 ft.
Model 6 - 8y = 66 ft.; Lo =1,29 ft.; Ly = 37 ft.

Models 2, 5 and 6 have the same height (13) and length in the direc-
tion of wave advance (21), but the widths of the models vary. Fig.

9 shows the models, their dimensions, and their relationship to the

advancing wave.

Experimental data for models 1 and 2 was collected by Herbich
and Shank (6} and made available to the author by Dr. Herbich. The
data for models 3, 4, 5 and 6 was taken by the author in the experi-
mental program described in this thesis.

Experimental Apparatus. - To facilitate the positioning of the

model in the wave basin a cradle was suspended from the ceiling of
the laboratory as shown in Fig. 11. The cradle supported five force
transducers and a wave gauge.

Four holes (1.5 in. dig.) were cut in a 30 in. by 24 in. piece
of plywood which was fitted into the base of the cradle. The holes
were cut so that when the front edge of the board and the front edge
of the cradle were adjacent and parallel the holes were over the four
corners of the model test position. The four vertical force trans-

ducers were placed over these holes. The fifth transducer used to

43
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measure the horizontal force was located on a second board at the rear
of the cradle as shown in Fig. 10.

The force transducers consisted of two strain gauges cemented to
an aluminum cantilever beam as shown in Fig. 12. A Toad applied to
the end of the cantilever produced a change in the resistance of the
strain gauges by compressing or lengthening the gauge wires. This
resistance change produced a small varying voltage which, for small
deflections, was proportional to the load. The strain gauge voltage
was recorded on either of two electronic recorders used. Four force
transducers were used to measure the vertical lcading on the model
and a four-channel Sanborn carrier-preamplifier recorder (mode1 150)
was used to record the loading. Only one force transducer was nec-
essary to measure horizontal force and this was recorded on a Hewlett-
Packard dual-channel carrier pre-amplifier recorder (mode1 321).
Recorder outputs are shown in Figs. 13 and 14. Basic sensitivity of
the force transducers was 5.0 grams per millimeter of pen deflection.

Because of space requirements the electronic recording units had
to be placed at some distance from the test position. The leads from
the force transducers were connected to a terminal strip on the
transducer board shown in Fig. 10. Five lengths of two conductor
shielded wire were run from the terminal strip to the Sanborn and
Hewlett-Packard recarders shown in Fig. 15.

The models were supported at each corner by fine stainless steel
connected to the four vertical force transducers as shown in Fig. 16

and 17. Clearance between the bottom of the mode] and the basin
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Fig. 10 - Cradle, wave gauge, and force

transducer relationship.

Fig. 11 - Overall view of model test position.
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floor was kept at 0.25" by adjusting the threaded eye-bolts on the
force transducer. Since the force on the models in the vertical
direction oscillates up and down it was necessary to weight the
models to keep the load-carrying wires from going slack when the
force was directed upward.

The model was constrained from horizontal motion in the direction
perpendicular to the wave crest line by fine stainless steel wires
which also transmitted the force to the horizontal force transducer
as shown in Fig. 17. The wire leads ran down from the force trans-
ducer to a five inch diameter minimum friction pulley where it was
diverted 30° and then fastened to the center of the rear face of the
model. From the center of the front face another lead ran to a ten-
sioning spring fastened to a stud fixed to the basin floor. The
spring kept sufficient tension in the Teads at all times. Not shown
in Fig. 17 but present in the experimental set up (Fig. 16) were
lateral constraints consisting of leader, spring, and stud on each
side of the model. These reduced the change of Tateral oscillations
of the model. The puliey and the three support studs were placed
sufficiently far from the model to kéep the flow conditions at the
model as undisturbed as possible (Fig. 8a).

In the experimental setup described above, the model was in a
fixed, rigid position. This was necessary to keep the disturbance
of the flow due to model movement to a minimum. Tests showed that
a 500 gram load produced a model deflection of less than .1 inch.

This flexibility of the system was required, however, for the force
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transducers to detect the wave forces on the model and is assumed
to have a negligable effect on the flow about the model.

Calibration is the procedure used to translate recorder pen
deflection into values of the physical quantity of interest (i.e.
force}. The procedure used to calibrate the force transducers is
given in Appendix IV.

The independence of the horizontal and vertical force transducers
was tested by loading the system in either of the two directions and
noting pen deflection (indicating force) in the other direction.
These tests showed that the horizontal and vertical force transducers
were independent. Since the vertical force on the model was the sum
of four force transducer readings, tests were performed to determine
the effect each vertical transducer had on the other. These tests
showed that loading one transducer separately produced a reaction in
the other three transducers. However, if the Toading was symmetrical
about the center of the model the four transducers acted as though
they were independent. Under a wave loading the forces are symmetrical
about the model axis parallel to the direction of wave advance.

Thus, if the model were properly positioned, and each transducer
carried one quarter of the static weight of the model, the four
transducers could be considered independent.

Each model was positioned at approximately the center of the
wave basin. Appendix 111 gives the detailed description of the pro-
cedure used to insure that each model was constrained in the same

position with respect to the advancing waves. With the model properly
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aligned, the vertical and horizontal forces were transmitted to the
proper force transducer.

Continuous time-histories of the water surface elevation at the
center of the model were taken using a capacitance-type wave gauge.
The output of the gauge was recorded on the Hewlett-Packard dual
channel carrier preamplifier recorder (Fig. 15). The amplitude of
the recorder trace was proportional to the amplitude of the wave and
was easily determined after calibration.

Calibration of the wave gauge is described in Appendix III. The
basic sensitivity of the wave gauge was 0.1 ft. per centimeter of
pen deflection. Wave gauge calibration was performed at the beginning
and end of each set of runs. The wave heights given by the electronic
wave gauge compared favorably with visual observation on a wave staff
located near the gauge.

The wave period was determined by dividing by ten the time it
took for ten complete rotations of the crankshaft of the wave genera-
tor. A trip switch on the wave generator flashed a 1ight bulb which
signaled a complete rotation. This average wave period for ten waves
compared favorably with the wave period determined from the recorder
trace by measuring the distance between two corresponding points in
a wave cycle and dividing by the rate of recorder paper feed which
is an accurately known constant {the Sanborn and Hewlett-Packard
nad common paper speeds of 1, 5, and 100 mm/sec. Five millimeters
per second was chosen as most feasible). A mobile instrument carriage

shown in Fig. 11, provided access to the model in the center of the



tank.

Experimental Procedure. - After positioning the model according

to the procedure detailed in Appendix IV  the wave basin was filled
to the test water depth of 18.0 or 24.0 inches. The .horizontal
force transducer and the four vertical force transducers were then
calibrated, and then a test run was performed. The lab data for a
run included the run number, water depth, the force and water eleva-
tion time-histories, the wave height visually observed on the wave
staff, the average of ten oscillations of the wave generator, the
wave generator stroke, and motor speed setting.

Due to frequent malfunctions of the Sanborn recording equipment
(oscillations of the pen zero, changes in basic sensitivity, and
complete failure were observed) it was deemed necessary to check the
calibration of the four vertical force transducers after each run.
Recalibration was performed if necessary and the next test was then
run.

At the end of a set of test runs (a test set usually consisted
of 12 to 20 wave runs for a given model position and water depth)
the wave gauge and horizontal force transducer calibration was
checked. The Hewlett-Packard recorder functioned quite well with
only minor variations noted.

As previously mentioned, two recorders were used to record the
time-history of the forces and water surface elevation. To correlate
the two outputs, a synchronized timing mark was placed on the record

during each test run.
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CHAPTER V
DATA ANALYSIS

Data from the Taboratory tests on the models was in the form of
recorder output as shown in Figs, 13 and 14. The center of each
recorder trace corresponds to the pen position for zero force or
zero water surface elevation (SWL). The magnitude of the forces and
the wave height were determined using the calibration curves obtained
for each transducer.

The values for the forces and wave height were the average
values determined from a continuous group of 6-8 waves. Since the
wave generator speed had to be increased from zero to the test speed
for each run, the first waves were usually of variable height and
period. After a short period of time, transverse water surface
oscillations were set up in the basin causing irregular wave records.
The waves from which the experimental data were obtained were from
the section of the wave record after the wave generator had settled
down and before the transverse oscillations set in.

For the oscillatory horizontal force, the maximum force in the
direction of wave advance {FHW) was evaluated separately from the
maximum force in the direction opposed to wave advance (FHO). The
total vertical force is the sum of the maximum force readings of the
four force transducers supporting the model. The vertical force
upward (FVU) was measured separately from the downward vertical

force (FVD).
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The wave height was measured as the total distance between two
extreme water surface elevations on the recorder trace. The wave
height and wave period determined from the water surface profile
compared well with the measured wave height and the timed period of
the wave generator observed during the experiments.

The phase angles between the wave crest and the forces on the
mode] were determined for some of the data. The phase angles between
the wave crest and the two horizontal forces were easily determined
as both records were on the same recorder output. However, the phase
angles of the maximum vertical forces were more difficult to determine
in that the wave trace was separate from the vertical force traces.
To correlate the two records in time, a timing mark was simultaneously
placed on each record. Determining the phase angle was also compli-
cated by the fact that the only feasible recorder paper feed common
to both recorders was 5 mm/sec. This tended to jam the profiles
together for the shorter period wave making phase angle interpreta-
tion very difficult. Only a random sampling of phase angles was
taken to aid in evaluation of the data.

To reduce the raw data once it had been converted to numerical
values, the author made use of the IBM 360/65 computer in Texas A&M
University's Data Processing Center. The fortran computer program
given in Appendix V calculated the wave length for each set of data,
the dimensionless force and other dimensionless terms used in evalu-
ating the experiments; and plotted the dimensionless graphs used in

this thesis. Figs. 30 and 31 show the computer results for the
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measured data. The plotting was done in conjunction with the Data

Processing Center's Calcomp 565 Plotter and Industrial Engineering’s

Gerber Plotter.



59

CHAPTER VI
PRESENTATION AND DISCUSSION OF RESULTS

The primary objective of this thesis was to study the forces
caused by oscillatory waves on large submerged objects and to present
the information regarding such forces in a suitable dimensionless
form. To accomplish this, a series of model tests were performed in
which the wave parameters and the wave forces were measured. The
resulting experimental data was then reduced to dimensionless form.

The dimensionless force term used in this study is given by
either Equation 3.42 or 3.43 and is presented here without the sub-

scripts indicating direction.

Foru = Fuax e (6.1)
vy - By sHes .osu
d

where

Form = dimensionless force term
FMAX = measured maximum force

Y = unit weight of water

H = wave height

d = water depth

¥ = object volume

and SHL3, SL1 are defined by equations 3.37 and 3.38 respectively.
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In determining the theoretical dimensionless force, the equations
for the maximum horizontal and vertical forces were derived assuming
that the force was entirely inertial. In Airy wave theory, if the
force is entirely inertial, it is proportional to wave height. The
theoretical dimensionless force terms derived by combining Equations
3.35 and 3.42, and Equations 3.36 and 3.43 are therefore independent
of the wave height as indicated by Equations 3.44 and 3.45. Equations
3.44 and 3.45 are theoretical equations for the above dimensionless
force for the horizontal and vertical directions respectively, and
are plotted versus L/d in Figs. 5 and 6. Note that these curves
depend on the value of the coefficient of mass.

The formation of model sets 1 and 2 in Chapter IV was done in
order to examine the effect of changes in model size on the dimension-
less force. The comparison of the dimensionless force between all
the models in a set could not be accomplished due to the difference
in wave periods used by the author (for models 3, 4, 5, and 6) and
those used by Herbich and Shank (for models 1 and 2). The range of
wave periods for the Herbich and Shank data was 0.71 sec. to 1.50
sec. The three dimensional wave facility used by the author had a
minimum period of 1.35 sec. Since the water depths were the same in
all experiments, the relative depth ratios differed. It was there-
fore only possible to compare the results for models 1 and 2 and
for models 3 and 4 in model set 1, and for models 5 and 6 in model

set 2.



The horizontal force on the model was measured in the direction
of wave advance (FHMW) and in the direction opposed to wave advance
(FHO)}. The results indicate that these forces were approximately
equal with FHW only slightly larger. In the vertical, the upward
force (FVU) and the downward force (FVD) were measured and were
approximately equal for values of relative depth less than 10.0.

For values of the relative depth greater than 10.0, the upward force
was usually somewhat less than the downward directed force. To
simplify the discussion of the results, only the data for the hori-
zontal force in the direction of wave advance and the downward di-
rected vertical force will be presented. The data presented will be
in dimensionless form. FDIMHW is the dimensionless representation of
FHW, and FDIMVD is the dimensionless representation for FVD. FDIMHW
and FDIMVD are determined by equation 6.1 with the corresponding
maximum measured FHW and FVD substituted for FMAX'

The results of the model tests are presented in graphs of di-
mensionless force (FDIM) versus relative depth (L/d). This form of
graph is suggested by Equations 3.44 and 3.45. The dimensionless
force was also plotted versus the relative size parameter (L1/L).
This type of graph was similar to the graphs of dimensionless force
versus relative depth. However, they did not account for changes in
water depth as the flow conditions at the model depend partially on
the relative depth (L/d).

The results for models 1 and 2 are presented in Figs. 18 and 20

for the horizontal force and in Figs. 19 and 21 for the vertical force.
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These graphs are for all three depths of water in which the two
models were tested (d = 1.1 ft., 1.5 ft., 2.0 ft.). The data indi-
cates that the horizontal dimensionless force depends on the wave
steepness. However, the data was such that it was difficult to draw,
with any confidence, lines of constant wave steepness. The upper
and Tower lines in Figs. 18 and 20 are drawn for the largest and
smallest dimensionless force measured at a given value of relative
depth. The Targe values of wave steepness (H/L = .08, .09) fell on
or just below the upper line on each graph. Low wave steepness
values (H/L = .009, .01, .02) fell above the lower line. The range
of wave steepness values for each L/d value for models 1 and 2 was
.009 to .09.

Figs. 18 and 20 indicate that the effect of wave steepness on
the horizontal dimensionless force increases with increasing relative
depth (L/d) for the range of relative depth shown. Equations 3.44
and 3.45 which were derived. assuming that the force was entirely
inertial indicates that the dimensionless force is not dependent on
wave steepness. To account for this discrepancy, we can examine the
velocity induced (drag) force. Figs. 22 and 23 show the horizontal
component of acceleration and velocity (Egs. 3.11 and 3.10) plotted
versus relative depth for the indicated depths of submergence (g) and
a wave height of 0.5 ft. The horizontal component of acceleration
(Fig. 22), which gives rise to the inertial force on the model,
increases from zero to a maximum value at L/d =~ 5.0 for large negative

depths of submergence. The horizontal velocity component (Fig. 23)
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increases at a slower rate but soon contributes to the total force
on the model as the "drag" force. Since the drag force is propor-
tional to the velocity squared and the velocity is proportional to
the wave height, then as the wave height increases the contribution
of the drag force to the total force can become significant.

Examination of the phase angles at which the maximum force
occurs should indicate the existence of the velocity induced force
on the model. The maximum horizontal velocity and acceleration
components are 90° out of phase, the maximum horizontal accelera-
tion occuring under the crest and trough of the wave. However,
for these two models, the determination of the phase angles could
not be accomplished for the reasons stated in Chapter V.

To observe the effect of increasing wave height on the hor-
izontal dimensionless force, the relative displacement parameter
(H/L1) was plotted versus the horizontal dimensionless force (Fig.

24). For a given model and depth of water the dimensionless force

can be written as

- F
FpIM MAX
H . SHL3 . SLT . constant

where

constant = y%

For a given relative depth, if equation 3.35 gives the maximum

force on the model, then lines of constant relative depth on the
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graph of FDIMHW versus H/L1 should be horizontal lines. Fig. 24

is drawn for model 2 in 1.5 ft. of water. The lines of constant
relative depth are not horizontal, but slope slightly upward in-
dicating that the horizontal dimensionless force increases with
increasing wave height. For the larger values of velative depth
the dimensionless force begins to decrease with increasing wave
height.

We may discuss Fig. 24 in terms of increasing wave height,
because the data presented there is for only one model and L1 is
constant. However, the shape of the curves in Fig. 24 can be Tooked
at from the standpoint of the relative displacement of the fiuid
particles. Sarpkaya and Garrison (33) showed that for small values
of relative displacement (H/L1), the coefficients of mass and drag
are related. As the relative displacement increased from zero, the
coefficient of mass decreased from its potential flow value. For
a given relative depth (L/d}, the amplitude of the fluid particle
displacement increases with increasing wave height, and the decrease
in dimensionless force with increasing relative displacement (H/L1)
can be attributed to a decrease in the coefficient of mass.

Sarpkaya and Garrison (33) also showed -that as the coefficient
of mass decreased, the coefficient of drag increased at small values
of relative displacement. Thus the contribution of the drag force
to the total force increased with increasing wave height. To
determine the importance of the drag force, the phase angle should

be examined. Experiments should be performed which accurately
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measure both the force and phase angle. For large wave heights

and for values of relative depth between 2.5 and 6.0, the contri-
bution of the drag force to the total force should not be neglected.
Theoretical force equations which are based on small wave height
neglect the drag force.

Figs. 25 and 26 show the vertical particle velocity and accel-
eration {Eqs. 3.9 and 3.11) plotted versus relative depth (L/d).

In the vertical direction, the particle velocity and displacement
are small and viscous effects (drag forces) are negligible. The
measured vertical dimensionless force should therefore agree closely
with the theoretical vertical dimensionless force. The data for
the vertical dimensionless force showed a slight tendency to in-
crease with increasing wave steepness. The curves drawn in Fig. 19
and 21 are the upper bounds for the force measured on the model at
the depth indicated. The variation due to the wave steepness was
small enough that the single Tine drawn should accurately predict
the wave force on the object for a wave steepness up to 0,09,
Graphing the measured dimensionless force for a given model versus
the relative displacement parameter shows that the vertical dimen-
sionless force is nearly independent of wave height { Fig. 27 ).

In the vertical direction the dimensionless force depends on
the water depth. For model 2, three distinct curves were drawn.
For model 1 the curves for d = 1.5 ft. and 2.0 ft. coincide, and
the curve for d = 1.1 ft. is distinct. The coefficient of mass

for a given object submerged in a fluid has been shown to increase
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as the object approaches a boundary. This could be one explanation,
as the water surface can be considered a boundary to the system. At
the Tower water depth, reflection from the model would result in
larger forces on the model; however, no attempt was made to determine
reflection at the model. The variation in force with water depth was
not found for the horizontal direction.

The results of the model tests performed by the author are pre-
sented in Figs. 28 to 47. Figures 28 to 37 are the dimensionless
plots for the maximum horizontal dimensionless force (FDIMHW) versus
relative depth (L/d) and Figs. 38 to 47 are the dimensionless plots
for the maximum vertical dimensionless force (FDIMVD) versus relative
depth {L/d). Each plot is identified by model number, corresponding
run numbers and water depth,

Although a theoretical analysis indicates that the horizontal
dimensionless force is independent of wave height, examination of
Figs. 28 to 37 shows the horizontal dimensionless force depends on the
wave height (H). The value of the wave steepness (H/L) is indicated
at each data point. It is noted that we may not actually say that the
horizontal dimensionless force increases with increasing wave steep-
ness from these graphs. The reason for this is the fact that in each
graph the water depth (d) is constant and for each value of relative
depth (L/d) points on a vertical Tine represent a constant wave
length (L). Therefore, increasing values of wave steepness (H/L)

only indicate the relative increase in wave height.
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The data is plotted as discrete points to show the effect of wave
height on the dimensionless force. The limitations of the wave gener-
ator prevented the determination of a constant wave steepness at all
values of relative depth. The wave heights generated at Targe values
of relative depth were smaller than those generated at Tow values of
relative depth. Thus it was impossible to present a set of curves of
horizontal dimensionless force versus relative depth for a constant
wave steepness, In general, the horizontal dimensionless force in-
creased with increasing wave height. Of notable exception are data
points which fall in the relative depth region of maximum horizontal
acceleration and have large values of wave height. For values of
relative depth at the deep water end of the intermediate depth range
the horizontal accelerations are a maximum and increase as the wave
height increases. The high accelerations are the result of large
pressure fields which are interrupted by the presence of the mode] and
pressure differences at the edges of the model result in the spawning
of vortices. Vortex formation results in a lowering of the coefficient
of mass for the model and hence a decrease in dimensionless force.

The increased pressure drag due to the formation of the vortices should
show up a change in phase angle at which the maximum force occurs. To
obtain a better understanding of this phenomenon phase angle measure-
ments should be done. Equipment Timitation made this difficult in these
experiments.

The dimensionless vertical force data is plotted versus relative

depth in Figs. 38 to 47. In the vertical direction both the particle
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acceleration and velocity are small and the experimental results should
agree more closely with the theoretical results. Although a slight
increase in vertical dimensionless force with increasing wave height
can be observed the experimental results do agree with the theoretical.
This can be seen by comparing Fig. 6 with the vertical force results
for each model provided a proper value of Cm is used. As with models

1 and 2 the results show a slightly higher dimensionless force at the
lTower water depth (d).

Both the horizontal and vertical dimensionless force plots show
an increase in the dimensionless force at the larger values of relative
depth (L/d). The theoretical dimensionless force, developed from Airy
wave theory, indicates that the force shouid decrease. But Airy wave
theory is developed for small amplitude waves in deep water, and
another wave theory suitable for shallow water (e.g. Solitary Wave
Theory) should be used in this region to describe the pressure, ac-
celeration, and velocity fields.

The data for models 1 and 2 were obtained from experiments in a
2 ft. wide two-dimensional wave tank. The experiments on the remain-
ing models were performed in a wide wave basin. The results, when
compared, indicate that side wall effects in the two-dimensional wave
flume were negligible. A dimensionless horizontal force of 0.42 was
experimentally obtained for model #3 for L/d=5 and H/L=.047 (Fig. 28).
Considering the coefficient of mass to be approximately equal for
models 2 and 3, then we may predict a horizontal dimensionless force

of 0.63 for model 2 (based on volume difference). Data for mode] 2
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shows a value of .60 at H/L=.044 and L/d=5. It is to be recognized
here that the coefficient of mass changes with both wave height and
model dimensions,

The experimental data reported in this paper was obtained from
models with open bottoms through which the wave pressure could enter
the modet. This type of model was used because of its apparent ap~
plication as under water storage facilities for the ofl industry, The
theoretical dimensionless force equation were developed for a solid
rectangular structure with the wave pressure acting at its boundaries.
In order to compare the two cases a thin plate was attached to the
bottom of model 4 (to be referred to as model 7). The model was po-
sitioned and filled with water and subjected to the series of waves.
The results for model 7 are presented in Figs. 36, 37, 46, and 47. A
comparison of these results with those for model 4 for the vertical
forces (Figs. 40 and 41 with 46 and 47) indicates the vertical force
on the open bottom model to be slightly higher than the vertical force
on the closed bottom model. For the forces in the horizontal direc-
tion the data for the two models in two feet of water shows fair
agreement (Figs. 30 and 36). At a water depth of 1.5 ft. (Figs. 31
and 37) the force on the closed bottom model is higher than the force

on the model with the open bottom,
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CHAPTER VII
CONCLUSIONS

The forces due to oscillatory waves on submerged objects have
been studied both fheoreticai]y and experimentally. The theoretical
approach is based on the assumption that the wave force is entirely
inertial and can be obtained from the wave pressure distribution on
the structure. The experimental results were obtained from model
studies in a three-dimensional wave basin. Additional data from
experiments in a two-dimensional wave flume on similar models was
also used in this study. The conclusions are stated as follows:

1. —— The wave forces on the models tested were a function of

the relative depth and wave steepness.

2. -——— The dimensionless force term used in this research can

be used as a model study parameter when plotted as a function

of relative depth and wave steepness.

3. —— The experimentally determined vertical dimensionless

force agreed cliosely with the theoretically determined dimen-

sionless force. Wave steepness did not appreciably affect the
vertical dimensionless force.

4, —— The effect of wave steepness was significant for the

experimentally determined values of the horizontal dimension-

less force. For large wave heights at the deep water end of
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intermediate depth water, a complex flow situation was produced which
resulted in greatly varying values of dimensionless horizontal force.
5. —— The research performed in this report could be greatly
advanced by further experiments which determine the phase
relationship between the maximum force and the crest of the

wave. This would show the effect of the velocity-induced force

(drag force) on the model which from these results may be
appreciable.

6. —— The comparison of the data obtained by Herbich and Shank

for the tests in the two-dimensional wave flume and the author's

data from the three-dimensional wave basin are good, indicating

that effects due to the proximity of the side walls in the

smaller flume were negligible.

7. — Until further model studies are performed in which phase
angles can be measured and the drag force determined, the hori-
zontal force on the submerged structure should be determined as

the sum of the inertial and drag components of force.
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APPENDIX 11

NOTATION
The following symbols are used in this paper.1
Symbo] Description Dimension
a Wave amplitude L
C Celerity L/T
CM Coefficient of mass -
CD Coefficient of drag -
CM CM for horizontal direction -
H
CM CM for vertical direction -
i)
d Water depth L
D Water depth on computer plots L
F Force ML/T2
F Horizontal force ML/TZ
FV Vertical force ML/T2
FHW Fy in direction of wave advance  ML/T?
FHO FH opposite to direction of wave
advance ML/T2

! These symbols are consistent throughout the text with the
exception of the Titerature survey. In the 1iterature survey, the
symbols are used as they appear in the cited literature, and are
redefined for each author.



FVU

FDIMHW
FDIMHO
FDIMVD
FDIMVU

Description

Vertical force downward
Vertical force upward
Dimensionless form of FHW
Dimensionless form of FHO
Dimensionless form of FVD
Dimensionless form of FVU
Gravitational constant
Wave height

Wave steepness

Wave number

Wave length

Relative depth
Characteristic length

Model length
Model width
Model height

Mean water level
Wave induced pressure

Distance measured from bottom
of tank upward

Distance from bocttom of tank
to center of model

Wave period

107

Dimension

ML/T?

ML/T2
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Description

Time

Horizontal velocity component

Dimension

T
L/7

Horizontal acceleration component L/T2

Velocity
Volume
Vertical velocity component

Vertical acceleration component

Horizontal coordinate
Vertical coordinate
Specific weight of water
Mass density of water
Dynamic viscosity of water

Vertical water particle dis-
placement

Horizontal water particle dis-
placement

Wave angular frequency

nth dimensionless term

Free surface elevation from MWL

Velocity potential

L/T
L3
L/T

L/T2

M/L2T
M/L
M/L T

L=/T



109

APPENDIX II1

CALIBRATION

Force Transducers. - Since wave forces are oscillatory, the

force transducers were required to measure the force in two direc-
tions. To accomplish this, each transducer was pretensioned, the
vertical force transducers by the weight of the model, and the hori-
zontal transducers by the spring in the horizontal constraint system,
The wave induced forces oscillated about this static load. The
procedure is as follows:

1. After positioning the model according to the procedure
given in Appendix I1I, balance the half-bridge of the recording um’ts3
and set the pens to the center of recorder paper. The pen positions
now represent zero wave loading of the model.

2. Calibrate the four vertical force transducers together.
From each transducer hand a 50 gram load and adjust the recorder
sensitivity to 10 millimeters of deflection. This gives a basic
sensitivity of 5.0 grams per millimeter of pen deflection. Next, use
the four calibration pulleys shown in Fig. 10 to put an upward load
on the transducer. MNote the distance each pen deflects.

3. Without changing recorder sensitivity, load the transducer
first downward then upward with calibration Toads of 100 and 200

grams. Note the amount of pen deflection for each loading. Plot the

3Ba1ancing procedures can be found in references 15 and 32.
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pen deflection as positive for an upward force and negative for a
downward force for each transducer. The resulting curve is the cal-
ibration curve for each transducer.

4. Calibration of the horizontal transducer follows steps 2
and 3 except that the calibration loads are 100, 200, 400 and 800
grams. Plot a calibration curve for the horizontal force transducer.

5. Remove calibration pulleys and calibration weights from
force transducers.

Wave Gauge. - A capacitance type wave gauge mounted on a vernier
was used to measure the water surface elevation at the model. The
procedure for calibration is as follows:

1. Lower the wave gauge into the water until 50% of the shank
is submerged,

2. With the water surface quiescent and the gauge wire wetted,
balance the full-bridge of the electronic recorder and set the re-
corder pen to the center of the recorder paper.

3. Using the vernier, lower the gauge 0.05 ft. and observe the
pen deflection. Adjust the recorder sensitivity for a pen deflection
of 5 mm.

4. Raise the gauge 0.05 ft. (back to gauge zero) and observe
if the pen goes back to the center of the recorder paper. If not,
rebalance and repeat step 3 until 0.05 ft. of gauge movement corres-
ponds to 5 mm of pen deflection. This sets the basic sensitivity

to 0.1 ft. per centimeter of pen deflection.
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5. With the recorder paper feed running at 1.0 mm/sec and moving
the vernier in jumps of 0.05 ft., raise the gauge to #0.25 ft. then
back through zero to -0.25 ft, then back to zero. The trace should
be step-l1ike and level off every 5 mm.

During calibration and testing, the sensing wire of the gauge
should be kept wet. There are two reasons for this. The capacitance
of the gauge differs depending on how much of the wire above the
still water level is wet. During tests, the varying wave heights
will wet different levels of the wire above the still water Jevel
assuming that drying occurs between tests. Thus, by wetting the
gauge before each test, the capacitance of the wire should be more
constant and the results truer. Secondly, due to water surface
tension, a meniscus forms around the sensing wire of the wave gauge.
As the water rises, the water surface at the wave gauge takes the
form of profile X-X in Fig. 38. When the water level begins to
drop, the meniscus remains attached at S until the water surface
drops a distance at. This causes the wave records to be flat-topped
at the crest. Wetting the sensing wire tends to pull the point of
attachment of the meniscus up the wire and the wave records assunme

a truer shape.
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APPENDIX 1V
PROCEDURE FOR ALIGNING MODEL IN TEST POSITIDN1

The procedure for positioning the model in the wave basin is as

follows:

1. Place the vertical force transducer board in the cradle with

the front edge paraliel to the front edge of the cradle and 1.25 in.
apart. This should align the four transducers over the corners of
the model test position, the transducer board itself aligned with
the wave generator.

2. Level the transducer board in the directions parallel and
perpendicular to the wave crests, and secure the board to cradie
using 2 in, C-clamps.

3. Suspend the model from the four force transducers using
the four vertical support wires as shown in Fig. 17. When the model
is at rest, the connecting points for the horizontal force leads
Tocated on the center of the front and rear model faces should be
directly over the center Tine of the wave basin drawn on the floor.
It the connecting points are not over the center line adjust the
transducer board until they are. Adjust the threaded force trans-
ducer eye-bolts to level the model 0.25 in. above the basin floor.

Mark the position of the model on the f]oor.z

1This procedure assumes that the cradle is properly aligned
with the wave generator.

ZThis is the model test position. Steps 4 thru 7 constrain the
model horizontally and adjust the model to the position as marked on
the floor.

113
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4. Adjust the height of the bottom of the puliey and the
height of the studs to 2.4 in. above the floor to coincide with the
level of the horizontal leader connecting points on the model (Fig.
17). Center the pulley and the forward support stud with the center-
line of the model. Align the two lateral supports with the trans-
verse centerline of the model.

5. Connect leader A as shown in Fig. 17. Adjust the position
of the horizontal force transducer so that the extension of the tan-
gent formed by the leader at the pully is perpendicular to the basin
floor.

6. Connect the spring and leader B as shown in Fig. 17. By
adjusting the threaded eye-bolts on the support stud and force trans-
ducer, bring the model to the test position drawn on the floor.

7. Connect lateral restraints as shown in Fig, 16, Adjust
eye-bolts on studs to bring model to test position drawn on floor.

This completes positioning of the model and the tank may be filled.



APPENDIX V
COMPUTER PROGRAM

The following pages include the computer program used in
analyzing the model data. The program consists of four steps.
Step 1 reads in the raw data from the model tests. Step two cal-
culates the wave length (L) in the subroutine CALLEN. Step 3
calculates the dimensionless parameters used in the study. Step
4 outputs the data in the form of printed output and Calcomp or

Gerber data piots.
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